詳細書目資料

5
0
0
0

電化學轉換氫氧化鎳薄膜作為催化層直接生長奈米碳管應用於超級電容器 = Electrochemical Conversion of Nickel Hydroxide Thin Films as Catalytic Layers for Direct Growth of Carbon Nanotubes in Supercapacitors / 高盛宏.

館藏資訊

摘要註

在此項研究中,我們成功製備出氫氧化鎳薄膜於發泡鎳基材 (Nickel Foam, NF) 上作為直接生長奈米碳管 (Carbon Nanotubes, CNTs) 的催化層,在這裡我們使用了簡單快速的循環伏安法 (Cyclic Voltammetry, CV),在鹼性水基的電解液中將發泡鎳自轉換成氫氧化鎳薄膜,由於氫氧化鎳的氫氧基可以在化學氣相沉積 (Chemical Vapor Deposition, CVD) 中直接還原成水以促進奈米碳管的生長,因此氫氧化鎳薄膜是一個良好的奈米碳管催化層,這種方法能夠實現直接生長緻密且均勻的奈米碳管於發泡鎳基板上。 於研究中使用無黏合劑直接生長奈米碳管於發泡鎳基材上,有兩大優點,首先是發泡鎳是一種儲能效果極佳的基材而奈米碳管則具有高附著性和高比表面積等特性,因此基於向兩項優點非常適合做為電雙層電容器 (Electric double-layer capacitors) 並且可以發揮出極大的性能,在電流密度為 1 mA cm−2的實驗配置下,三電極和雙電極展現出分別為737.4 mF cm−2和319.1 mF cm−2的出色比電容值且在經過10,000次充放電循環後電容保持率為 96.41 %,這表明該電極具備優異的電化學穩定性。. In this research, we successfully prepared nickel hydroxide thin films on a nickel foam substrate as a catalytic layer for the direct growth of carbon nanotubes (CNTs). We used a simple and fast cyclic voltammetry (CV) method to convert the nickel foam into nickel hydroxide thin films in an alkaline electrolyte. Since the hydroxyl groups of nickel hydroxide can be directly reduced to water in chemical vapor deposition (CVD) to promote the growth of CNTs, nickel hydroxide thin films are a good catalytic layer for CNTs. This method enables the direct growth of dense and uniform CNTs on nickel foam substrate. This research used a binder-free method to directly grow CNTs on a nickel foam substrate, which has two major advantages. Firstly, nickel foam is an excellent energy storage material and CNTs have properties such as high adhesion and high specific surface area, making them well-suited for use as electric double-layer capacitors (EDLCs) and capable of exhibiting excellent performance. In the experimental configuration with a current density of 1 mA cm−2, the three-electrode and two-electrode configurations showed outstanding specific capacitance values of 737.4 mF cm−2 and 319.1 mF cm−2, respectively, and the capacitance retention rate after 10,000 charge-discharge cycles was 96.41 %, indicating excellent electrochemical stability of the electrode..

回到最上